If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x=100
We move all terms to the left:
3x^2+4x-(100)=0
a = 3; b = 4; c = -100;
Δ = b2-4ac
Δ = 42-4·3·(-100)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{19}}{2*3}=\frac{-4-8\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{19}}{2*3}=\frac{-4+8\sqrt{19}}{6} $
| 2000+6x=200 | | 3s(5-2)=12.5 | | y/y+1÷2-2y-1÷3=2 | | 4(5x-2)=128 | | 2000=12x+350 | | 2x+8(x+8)•3=67 | | 6x-27+3x=13-x | | 6x-27+3=13-x | | y²+10+26=0 | | V=3.14r(2)6 | | 0.6y-(y)=0 | | 200+0.6y=y | | 20=w÷6 | | 9×m=4 | | 3.2+x/0.3=-4.8 | | 0.65k-0.1=0.4k-0.35 | | 0.65y=y | | 6x+19=142 | | 5x-22=2x-8 | | 2x-8=5x-22 | | ∣4x−1∣+6=3x | | -4(6+2k)=-4(3k-6) | | 2/8+19y=-8+15y | | 2*1/3*x-7/2*x=3*1/5*x-14/3*x-9 | | 21/3*x-7/2*x=31/5*x-14/3*x-9 | | 4(x-5x)=-7(5-4x) | | 29.3+y=180 | | x-7-9x-3+4x=3x-3-7x+2+5x | | 16=5a=13a | | (e+20)=(3e-4) | | 5/3x+1/3=41/3+7/3x | | 6x-21=5x+17+17 |